py-bbn¶

py-bbn
is a Python implementation of probabilistic and causal inference in Bayesian Belief Networks using exact inference algorithms [CGH97, Cow98, HD99, Kol09, Mur12].
You may install py-bbn
from pypi.
pip install pybbn
If you like py-bbn, you might be interested in our next-generation products.
turing_bbn is a C++17 implementation of py-bbn; take your causal and probabilistic inferences to the next computing level!

pyspark-bbn is a is a scalable, massively parallel processing MPP framework for learning structures and parameters of Bayesian Belief Networks BBNs using Apache Spark.

Please contact us at info@oneoffcoder.com. Let’s reach for success!
Probabilistic Inference¶
The probabilistic inference algorithm used by py-bbn is an exact inference algorithm. Let’s go through an example on how to conduct exact inference.
Huang Graph¶
Below is the code to create the Huang Graph [HD99]. Note the typical procedure as follows.
create a Bayesian Belief Network (BBN)
create a junction tree from the graph
assert evidence
print out the marginal probabilities

Huang Bayesian Belief Network structure.¶
1from pybbn.graph.dag import Bbn
2from pybbn.graph.edge import Edge, EdgeType
3from pybbn.graph.jointree import EvidenceBuilder
4from pybbn.graph.node import BbnNode
5from pybbn.graph.variable import Variable
6from pybbn.pptc.inferencecontroller import InferenceController
7
8# create the nodes
9a = BbnNode(Variable(0, 'a', ['on', 'off']), [0.5, 0.5])
10b = BbnNode(Variable(1, 'b', ['on', 'off']), [0.5, 0.5, 0.4, 0.6])
11c = BbnNode(Variable(2, 'c', ['on', 'off']), [0.7, 0.3, 0.2, 0.8])
12d = BbnNode(Variable(3, 'd', ['on', 'off']), [0.9, 0.1, 0.5, 0.5])
13e = BbnNode(Variable(4, 'e', ['on', 'off']), [0.3, 0.7, 0.6, 0.4])
14f = BbnNode(Variable(5, 'f', ['on', 'off']), [0.01, 0.99, 0.01, 0.99, 0.01, 0.99, 0.99, 0.01])
15g = BbnNode(Variable(6, 'g', ['on', 'off']), [0.8, 0.2, 0.1, 0.9])
16h = BbnNode(Variable(7, 'h', ['on', 'off']), [0.05, 0.95, 0.95, 0.05, 0.95, 0.05, 0.95, 0.05])
17
18# create the network structure
19bbn = Bbn() \
20 .add_node(a) \
21 .add_node(b) \
22 .add_node(c) \
23 .add_node(d) \
24 .add_node(e) \
25 .add_node(f) \
26 .add_node(g) \
27 .add_node(h) \
28 .add_edge(Edge(a, b, EdgeType.DIRECTED)) \
29 .add_edge(Edge(a, c, EdgeType.DIRECTED)) \
30 .add_edge(Edge(b, d, EdgeType.DIRECTED)) \
31 .add_edge(Edge(c, e, EdgeType.DIRECTED)) \
32 .add_edge(Edge(d, f, EdgeType.DIRECTED)) \
33 .add_edge(Edge(e, f, EdgeType.DIRECTED)) \
34 .add_edge(Edge(c, g, EdgeType.DIRECTED)) \
35 .add_edge(Edge(e, h, EdgeType.DIRECTED)) \
36 .add_edge(Edge(g, h, EdgeType.DIRECTED))
37
38# convert the BBN to a join tree
39join_tree = InferenceController.apply(bbn)
40
41# insert an observation evidence
42ev = EvidenceBuilder() \
43 .with_node(join_tree.get_bbn_node_by_name('a')) \
44 .with_evidence('on', 1.0) \
45 .build()
46join_tree.set_observation(ev)
47
48# print the posterior probabilities
49for node, posteriors in join_tree.get_posteriors().items():
50 p = ', '.join([f'{val}={prob:.5f}' for val, prob in posteriors.items()])
51 print(f'{node} : {p}')
A Bayesian Belief Network (BBN) is defined as a pair, G, P
, where
G
is a directed acylic graph (DAG)P
is a joint probability distributionand
G
satisfies the Markov Condition (nodes are conditionally independent of non-descendants given its parents)
Ideally, the API should force the user to define G
and P
separately. However, there will be a bit of cognitive friction
with this API as we define nodes associated with their local probability models (conditional probability tables)
and then the structure afterwards. But this approach seems a bit more concise, no?
Updating Conditional Probability Tables¶
Sometimes, you may want to preserve the join tree structure and just update the condtional probability tables (CPTs). Here’s how to do so.
1from pybbn.graph.dag import Bbn
2from pybbn.graph.edge import EdgeType, Edge
3from pybbn.graph.node import BbnNode
4from pybbn.graph.variable import Variable
5from pybbn.pptc.inferencecontroller import InferenceController
6
7# you have built a BBN
8a = BbnNode(Variable(0, 'a', ['t', 'f']), [0.2, 0.8])
9b = BbnNode(Variable(1, 'b', ['t', 'f']), [0.1, 0.9, 0.9, 0.1])
10bbn = Bbn().add_node(a).add_node(b) \
11 .add_edge(Edge(a, b, EdgeType.DIRECTED))
12
13# you have built a junction tree from the BBN
14# let's call this "original" junction tree the left-hand side (lhs) junction tree
15lhs_jt = InferenceController.apply(bbn)
16
17# you may just update the CPTs with the original junction tree structure
18# the algorithm to find/build the junction tree is avoided
19# the CPTs are updated
20rhs_jt = InferenceController.reapply(lhs_jt, {0: [0.3, 0.7], 1: [0.2, 0.8, 0.8, 0.2]})
21
22# let's print out the marginal probabilities and see how things changed
23# print the marginal probabilities for the lhs junction tree
24print('lhs probabilities')
25# print the posterior probabilities
26for node, posteriors in lhs_jt.get_posteriors().items():
27 p = ', '.join([f'{val}={prob:.5f}' for val, prob in posteriors.items()])
28 print(f'{node} : {p}')
29
30# print the marginal probabilities for the rhs junction tree
31print('rhs probabilities')
32for node, posteriors in rhs_jt.get_posteriors().items():
33 p = ', '.join([f'{val}={prob:.5f}' for val, prob in posteriors.items()])
34 print(f'{node} : {p}')
Note that we use InferenceController.reapply(...)
to apply the new CPTs to a previous one and that we
get a new junction tree as an output.
Gaussian Inference¶
Inference on a Gaussian Bayesian Network (GBN) is accomplished through updating the means and covariance matrix incrementally [CGH97]. The following GBN comes from [Cow98].

Cowell GBN structure.¶
The variables come from the following Gaussian distributions.
\(Y = \mathcal{N}(0, 1)\)
\(X = \mathcal{N}(Y, 1)\)
\(Z = \mathcal{N}(Z, 1)\)
Below is a code sample of how we can perform inference on this GBN.
1import numpy as np
2
3from pybbn.gaussian.inference import GaussianInference
4
5
6def get_cowell_data():
7 """
8 Gets Cowell data.
9
10 :return: Data and headers.
11 """
12 n = 10000
13 Y = np.random.normal(0, 1, n)
14 X = np.random.normal(Y, 1, n)
15 Z = np.random.normal(X, 1, n)
16
17 D = np.vstack([Y, X, Z]).T
18 return D, ['Y', 'X', 'Z']
19
20
21# assume we have data and headers (variable names per column)
22# X is the data (rows are observations, columns are variables)
23# H is just a list of variable names
24X, H = get_cowell_data()
25
26# then we can compute the means and covariance matrix easily
27M = X.mean(axis=0)
28E = np.cov(X.T)
29
30# the means and covariance matrix are all we need for gaussian inference
31# notice how we keep `g` around?
32# we'll use `g` over and over to do inference with evidence/observations
33g = GaussianInference(H, M, E)
34# {'Y': (0.00967, 0.98414), 'X': (0.01836, 2.02482), 'Z': (0.02373, 3.00646)}
35print(g.P)
36
37# we can make a single observation with do_inference()
38g1 = g.do_inference('X', 1.5)
39# {'X': (1.5, 0), 'Y': (0.76331, 0.49519), 'Z': (1.51893, 1.00406)}
40print(g1.P)
41
42# we can make multiple observations with do_inferences()
43g2 = g.do_inferences([('Z', 1.5), ('X', 2.0)])
44# {'Z': (1.5, 0), 'X': (2.0, 0), 'Y': (1.00770, 0.49509)}
45print(g2.P)
Causal Inference¶
Average Causal Effect¶
Here’s how you may estimate the Average Causal Effect ACE
using Pearl’s do-operator
[Pea88, Pea00, Pea16, Pea18].
In this example, we want to estimate the ACE of drug on recovery where recovery is true.

Z is confounding X and Y.¶
1from pybbn.causality.ace import Ace
2from pybbn.graph.dag import Bbn
3from pybbn.graph.edge import Edge, EdgeType
4from pybbn.graph.node import BbnNode
5from pybbn.graph.variable import Variable
6
7# create a BBN
8gender_probs = [0.49, 0.51]
9drug_probs = [0.23323615160349853, 0.7667638483965015,
10 0.7563025210084033, 0.24369747899159663]
11recovery_probs = [0.31000000000000005, 0.69,
12 0.27, 0.73,
13 0.13, 0.87,
14 0.06999999999999995, 0.93]
15
16X = BbnNode(Variable(1, 'drug', ['false', 'true']), drug_probs)
17Y = BbnNode(Variable(2, 'recovery', ['false', 'true']), recovery_probs)
18Z = BbnNode(Variable(0, 'gender', ['female', 'male']), gender_probs)
19
20bbn = Bbn() \
21 .add_node(X) \
22 .add_node(Y) \
23 .add_node(Z) \
24 .add_edge(Edge(Z, X, EdgeType.DIRECTED)) \
25 .add_edge(Edge(Z, Y, EdgeType.DIRECTED)) \
26 .add_edge(Edge(X, Y, EdgeType.DIRECTED))
27
28# compute the ACE
29ace = Ace(bbn)
30results = ace.get_ace('drug', 'recovery', 'true')
31t = results['true']
32f = results['false']
33average_causal_impact = t - f
Serialization/Deserialization¶
We all need a way to save (serialize) and load (deserialize) our Bayesian Belief Networks (BBNs) and join trees (JTs). Here’s how to do so. Note that serde (serialization/deserialization) features are just writing to JSON or CSV formats and loading back from the such files. The code takes care of the serde process.
Serializing a BBN¶
JSON Serialization Format¶
1from pybbn.graph.dag import Bbn
2from pybbn.graph.edge import Edge, EdgeType
3from pybbn.graph.node import BbnNode
4from pybbn.graph.variable import Variable
5
6# create graph
7a = BbnNode(Variable(0, 'a', ['t', 'f']), [0.2, 0.8])
8b = BbnNode(Variable(1, 'b', ['t', 'f']), [0.1, 0.9, 0.9, 0.1])
9bbn = Bbn().add_node(a).add_node(b) \
10 .add_edge(Edge(a, b, EdgeType.DIRECTED))
11
12# serialize
13Bbn.to_json(bbn, 'simple-bbn.json')
You will get a file simple-bbn.json
written out with the following content.
1{
2 "nodes": {
3 "0": {
4 "probs": [
5 0.2,
6 0.8
7 ],
8 "variable": {
9 "id": 0,
10 "name": "a",
11 "values": [
12 "t",
13 "f"
14 ]
15 }
16 },
17 "1": {
18 "probs": [
19 0.1,
20 0.9,
21 0.9,
22 0.1
23 ],
24 "variable": {
25 "id": 1,
26 "name": "b",
27 "values": [
28 "t",
29 "f"
30 ]
31 }
32 }
33 },
34 "edges": [
35 {
36 "pa": 0,
37 "ch": 1
38 }
39 ]
40}
CSV Serialization Format¶
1from pybbn.graph.dag import Bbn
2from pybbn.graph.edge import Edge, EdgeType
3from pybbn.graph.node import BbnNode
4from pybbn.graph.variable import Variable
5
6# create graph
7a = BbnNode(Variable(0, 'a', ['t', 'f']), [0.2, 0.8])
8b = BbnNode(Variable(1, 'b', ['t', 'f']), [0.1, 0.9, 0.9, 0.1])
9bbn = Bbn().add_node(a).add_node(b) \
10 .add_edge(Edge(a, b, EdgeType.DIRECTED))
11
12# serialize
13Bbn.to_csv(bbn, 'simple-bbn.csv')
You will get a file simple-bbn.csv
written out with the following content.
10,a,t,f,|,0.2,0.8
21,b,t,f,|,0.1,0.9,0.9,0.1
30,1,directed
Deserializing a BBN¶
JSON Deserialization Format¶
1from pybbn.graph.dag import Bbn
2
3# deserialize
4bbn = Bbn.from_json('simple-bbn.json')
CSV Deserialization Format¶
1from pybbn.graph.dag import Bbn
2
3# deserialize
4bbn = Bbn.from_csv('simple-bbn.csv')
Join Tree Serde¶
A join tree may also be serialized and deserialized. Only json
format is supported for now.
Serializing a Join Tree¶
1import json
2
3from pybbn.graph.dag import Bbn
4from pybbn.graph.edge import EdgeType, Edge
5from pybbn.graph.jointree import JoinTree
6from pybbn.graph.node import BbnNode
7from pybbn.graph.variable import Variable
8from pybbn.pptc.inferencecontroller import InferenceController
9
10a = BbnNode(Variable(0, 'a', ['t', 'f']), [0.2, 0.8])
11b = BbnNode(Variable(1, 'b', ['t', 'f']), [0.1, 0.9, 0.9, 0.1])
12bbn = Bbn().add_node(a).add_node(b) \
13 .add_edge(Edge(a, b, EdgeType.DIRECTED))
14jt = InferenceController.apply(bbn)
15
16with open('simple-join-tree.json', 'w') as f:
17 d = JoinTree.to_dict(jt, bbn)
18 j = json.dumps(d, sort_keys=True, indent=2)
19 f.write(j)
You will get a file simple-join-tree.json
written out with the following content.
1{
2 "bbn_nodes": {
3 "0": {
4 "probs": [
5 0.2,
6 0.8
7 ],
8 "variable": {
9 "id": 0,
10 "name": "a",
11 "values": [
12 "t",
13 "f"
14 ]
15 }
16 },
17 "1": {
18 "probs": [
19 0.1,
20 0.9,
21 0.9,
22 0.1
23 ],
24 "variable": {
25 "id": 1,
26 "name": "b",
27 "values": [
28 "t",
29 "f"
30 ]
31 }
32 }
33 },
34 "jt": {
35 "edges": [],
36 "nodes": {
37 "0-1": {
38 "node_ids": [
39 0,
40 1
41 ],
42 "type": "clique"
43 }
44 },
45 "parent_info": {
46 "0": [],
47 "1": [
48 0
49 ]
50 }
51 }
52}
Deserializing a Join Tree¶
1import json
2
3from pybbn.graph.jointree import JoinTree
4from pybbn.pptc.inferencecontroller import InferenceController
5
6with open('simple-join-tree.json', 'r') as f:
7 j = f.read()
8 d = json.loads(j)
9 jt = JoinTree.from_dict(d)
10 jt = InferenceController.apply_from_serde(jt)
Generating Bayesian Belief Networks¶
Let’s generate some Bayesian Belief Networks (BBNs). The algorithms are taken from Random Generation of Bayesian Networks [IC02]. There are two types of BBNs you may generate.
singly-connected
multi-connected
A singly-connected BBN is one, where ignoring the direction of the edges, there is at most one path between any two nodes.
A multi-connected BBN is one that is not
singly-connected.

Singly-connected network structure.¶

Multi-connected network structure. There are two paths between C and F: (C, D, F) and (C, E, F).¶
Singly-Connected¶
The key method to use here is generate_singly_bbn
.
1import numpy as np
2
3from pybbn.generator.bbngenerator import generate_singly_bbn, convert_for_exact_inference, convert_for_drawing
4
5# very important to set the seed for reproducible results
6np.random.seed(37)
7
8# this method generates the graph, g, and probabilities, p
9# note we are generating a singly-connected graph
10g, p = generate_singly_bbn(5, max_iter=5)
11
12# you have to convert g and p to a BBN
13bbn = convert_for_exact_inference(g, p)
14
15# you can convert the BBN to a nx graph for visualization
16nx_graph = convert_for_drawing(bbn)
Multi-Connected¶
The key method to use here is generate_multi_bbn
.
1import numpy as np
2
3from pybbn.generator.bbngenerator import generate_multi_bbn, convert_for_exact_inference, convert_for_drawing
4
5# very important to set the seed for reproducible results
6np.random.seed(37)
7
8# this method generates the graph, g, and probabilities, p
9# note we are generating a multi-connected graph
10g, p = generate_multi_bbn(5, max_iter=5)
11
12# you have to convert g and p to a BBN
13bbn = convert_for_exact_inference(g, p)
14
15# you can convert the BBN to a nx graph for visualization
16nx_graph = convert_for_drawing(bbn)
Direct Generation¶
In the case where you do NOT
need a reference to the BBN objects, use the API’s convenience method to generate and serialize the BBN directly to file.
1import numpy as np
2
3from pybbn.generator.bbngenerator import generate_bbn_to_file
4
5# set the seed for reproducibility
6np.random.seed(37)
7
8# generate a singly-connected BBN
9generate_bbn_to_file(n=10, file_path='singly-bbn.csv', bbn_type='singly', max_alpha=10)
10
11# generate a multi-connected BBN
12generate_bbn_to_file(n=10, file_path='multi-bbn.csv', bbn_type='multi', max_alpha=10)
Here’s the output for singly-bbn.csv
.
10,0,state0,state1,|,0.5495149877004699,0.4504850122995299
21,1,state0,state1,|,0.35835359558290997,0.64164640441709,0.8660444980250707,0.13395550197492936
32,2,state0,state1,|,0.5828348518985648,0.4171651481014352,0.6352808281847757,0.3647191718152243
43,3,state0,state1,|,0.43155247482552955,0.5684475251744704,0.05744110250902426,0.9425588974909757,0.44585399607259946,0.5541460039274007,0.286749915005319,0.713250084994681
54,4,state0,state1,|,0.3190576398549361,0.6809423601450639,0.011424133320075755,0.9885758666799241
65,5,state0,state1,|,0.48207371043602226,0.5179262895639779,0.07147107402394111,0.9285289259760588
76,6,state0,state1,|,0.2076134466833406,0.7923865533166594,0.44542849473036455,0.5545715052696354
87,7,state0,state1,|,0.757560101942848,0.242439898057152
98,8,state0,state1,|,0.1906328058926942,0.8093671941073058,0.2814000588799281,0.7185999411200719
109,9,state0,state1,|,0.7854793106243432,0.2145206893756569,0.12392098364527641,0.8760790163547235
110,1,directed
121,2,directed
132,3,directed
143,4,directed
153,8,directed
165,6,directed
175,3,directed
187,5,directed
198,9,directed
Here’s the output for multi-bbn.csv
.
10,0,state0,state1,|,0.680874572938313,0.319125427061687
21,1,state0,state1,|,0.7617263477727293,0.23827365222727065,0.3117227721913154,0.6882772278086846
32,2,state0,state1,|,0.12614472921860395,0.8738552707813961,0.7070911105993563,0.29290888940064375
43,3,state0,state1,|,0.4055587320025024,0.5944412679974977,0.9624106996627307,0.037589300337269156
54,4,state0,state1,|,0.31986562609614827,0.6801343739038517,0.022365118374575416,0.9776348816254246
65,5,state0,state1,|,0.77366174354673,0.2263382564532701,0.8579513677510221,0.1420486322489778,0.3183725110598738,0.6816274889401261,0.04262514631905535,0.9573748536809447
76,6,state0,state1,|,0.05830032685169777,0.9416996731483022,0.5840685338695271,0.41593146613047294,0.7078930065265004,0.29210699347349944,0.490562272424676,0.509437727575324
87,7,state0,state1,|,0.7569425298012309,0.243057470198769,0.6536654079476188,0.3463345920523811,0.6299885487124776,0.3700114512875224,0.4929042112083024,0.5070957887916976
98,8,state0,state1,|,0.3295640257593744,0.6704359742406256,0.9098731919901998,0.09012680800980029
109,9,state0,state1,|,0.7804943261233692,0.21950567387663072,0.43963638923803844,0.5603636107619615,0.03168532379450399,0.968314676205496,0.7189237718440259,0.28107622815597405,0.356320337335263,0.643679662664737,0.8089559692517324,0.19104403074826756,0.520364955519572,0.47963504448042804,0.3989706528653481,0.601029347134652
110,1,directed
120,9,directed
130,5,directed
141,2,directed
152,3,directed
163,4,directed
174,5,directed
184,6,directed
194,7,directed
205,6,directed
216,7,directed
226,9,directed
237,8,directed
248,9,directed
Sampling Data¶
Sampling data from a BBN is possible. The algorithm uses logic sampling with rejection
[Hen88].
Simple Sampling¶
This code demonstrates simple sampling.
1from pybbn.graph.dag import Bbn
2from pybbn.graph.edge import Edge, EdgeType
3from pybbn.graph.node import BbnNode
4from pybbn.graph.variable import Variable
5from pybbn.sampling.sampling import LogicSampler
6
7a = BbnNode(Variable(0, 'a', ['on', 'off']), [0.5, 0.5])
8b = BbnNode(Variable(1, 'b', ['on', 'off']), [0.5, 0.5, 0.4, 0.6])
9c = BbnNode(Variable(2, 'c', ['on', 'off']), [0.7, 0.3, 0.2, 0.8])
10
11bbn = Bbn() \
12 .add_node(a) \
13 .add_node(b) \
14 .add_node(c) \
15 .add_edge(Edge(a, b, EdgeType.DIRECTED)) \
16 .add_edge(Edge(b, c, EdgeType.DIRECTED))
17
18sampler = LogicSampler(bbn)
19samples = sampler.get_samples(n_samples=10000, seed=37)
Sampling with Rejection¶
This code demonstrates sampling with evidence asserted. During each round of sampling, if the sample value generated does not match with the evidence, the entire sample is discarded.
1from pybbn.graph.dag import Bbn
2from pybbn.graph.edge import Edge, EdgeType
3from pybbn.graph.node import BbnNode
4from pybbn.graph.variable import Variable
5from pybbn.sampling.sampling import LogicSampler
6
7a = BbnNode(Variable(0, 'a', ['on', 'off']), [0.5, 0.5])
8b = BbnNode(Variable(1, 'b', ['on', 'off']), [0.5, 0.5, 0.4, 0.6])
9c = BbnNode(Variable(2, 'c', ['on', 'off']), [0.7, 0.3, 0.2, 0.8])
10
11bbn = Bbn() \
12 .add_node(a) \
13 .add_node(b) \
14 .add_node(c) \
15 .add_edge(Edge(a, b, EdgeType.DIRECTED)) \
16 .add_edge(Edge(b, c, EdgeType.DIRECTED))
17
18sampler = LogicSampler(bbn)
19samples = sampler.get_samples(evidence={0: 'on'}, n_samples=10000, seed=37)
Create BBN with structure and data¶
If you know the BBN structure and have data, you can create a BBN using the structure and learn the parameters from the data. For now, the parameters are simply the raw counts (not-Bayesian). The method to use is from Factory.from_data()
.
[1]:
import pandas as pd
from pybbn.graph.factory import Factory
df = pd.read_csv('./data/data-from-structure.csv')
structure = {
'a': [],
'b': ['a'],
'c': ['b']
}
bbn = Factory.from_data(structure, df)
As usual, after you acquire a BBN, you can performe inference using an InferenceController
.
[2]:
from pybbn.pptc.inferencecontroller import InferenceController
join_tree = InferenceController.apply(bbn)
for node, posteriors in join_tree.get_posteriors().items():
p = ', '.join([f'{val}={prob:.5f}' for val, prob in posteriors.items()])
print(f'{node} : {p}')
b : off=0.55020, on=0.44980
c : off=0.57210, on=0.42790
a : off=0.49850, on=0.50150
[3]:
import networkx as nx
n, d = bbn.to_nx_graph()
nx.draw(n, with_labels=True, labels=d, node_color='r', alpha=0.5)

Exact Inference with Widgets¶
Here, we show a very simple example of how to observe the marginal posterior probabilities of each node given the state of one. We will use the Huang graph [HD99].
Simulate data¶
[1]:
%matplotlib inline
from pybbn.graph.dag import BbnUtil
from pybbn.graph.jointree import EvidenceBuilder, EvidenceType
from pybbn.pptc.inferencecontroller import InferenceController
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from collections import namedtuple
np.random.seed(37)
plt.style.use('ggplot')
Marginal = namedtuple('Marginal', 'name, s')
def potential_to_series(p):
vals = []
index = []
for pe in p.entries:
try:
v = pe.entries.values()[0]
except:
v = list(pe.entries.values())[0]
p = pe.value
vals.append(p)
index.append(v)
return pd.Series(vals, index=index)
def get_marginals(join_tree):
data = []
for node in join_tree.get_bbn_nodes():
name = node.variable.name
s = potential_to_series(join_tree.get_bbn_potential(node))
t = Marginal(name, s)
data.append(t)
return data
# get the pre-defined huang graph
bbn = BbnUtil.get_huang_graph()
# convert the BBN to a join tree
join_tree = InferenceController.apply(bbn)
Visualize¶
[2]:
import math
from ipywidgets import interact
@interact(a=[('unobserved', -1), ('off', 0), ('on', 1)])
def f(a=-1):
n_cols = 4
n_rows = math.ceil(len(bbn.get_nodes()) / n_cols)
if a == -1:
join_tree.unobserve_all()
marginals = get_marginals(join_tree)
else:
v = 'on' if a == 1 else 'off'
ev = EvidenceBuilder() \
.with_node(join_tree.get_bbn_node_by_name('a')) \
.with_evidence(v, 1.0) \
.build()
join_tree.unobserve_all()
join_tree.set_observation(ev)
marginals = get_marginals(join_tree)
marginals = sorted(marginals, key=lambda tup: tup[0])
fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5), sharey=True)
for m, ax in zip(marginals, np.ravel(axes)):
m.s.plot(kind='bar', legend=False, ax=ax)
ax.set_title(m.name)
ax.set_ylim([0.0, 1.0])
ax.set_xlabel('')
plt.tight_layout()
Multivariate Gaussian Inference with Widgets¶
This notebook shows how to do multivariate Gaussian inference with widgets. We allow one variable to change and visualize the change of distributions for the other. We will be using the Cowell graph [Cow98].
Simulate data¶
[1]:
%matplotlib inline
import numpy as np
from pybbn.gaussian.inference import GaussianInference
import matplotlib.pyplot as plt
np.random.seed(37)
plt.style.use('ggplot')
plt.rcParams['axes.grid'] = False
def get_cowell_data():
n = 10000
Y = np.random.normal(0, 1, n)
X = np.random.normal(Y, 1, n)
Z = np.random.normal(X, 1, n)
D = np.vstack([Y, X, Z]).T
return D, ['Y', 'X', 'Z']
def get_mvn():
X, H = get_cowell_data()
M = X.mean(axis=0)
E = np.cov(X.T)
g = GaussianInference(H, M, E)
return g
g = get_mvn()
[2]:
import pandas as pd
pd.DataFrame(g.marginals)
[2]:
name | mean | var | |
---|---|---|---|
0 | Y | -0.001723 | 0.990700 |
1 | X | 0.007448 | 2.016406 |
2 | Z | 0.002459 | 3.033838 |
Visualize¶
[3]:
from ipywidgets import interact
samples1 = g.sample_marginals(size=10000)
@interact(x=(-5, 5, 1))
def f(x=None):
if x is not None:
gg = g.do_inference('X', x)
else:
gg = g
samples2 = gg.sample_marginals(size=5000)
fig, axes = plt.subplots(1, 3, figsize=(15, 3), sharey=False)
axes = np.ravel(axes)
kind = 'hist'
alpha = 0.15
for (name, s2), ax in zip(samples2.items(), axes):
if name == 'X':
ax2 = ax.twinx()
_ = samples1[name].plot(kind=kind, ax=ax2, color='blue', alpha=alpha)
_ = ax.axvline(x=x, color='red')
_ = ax2.set_ylabel('')
else:
ax2 = ax.twinx()
_ = samples1[name].plot(kind=kind, ax=ax, color='blue', alpha=alpha)
_ = s2.plot(kind=kind, ax=ax)
_ = s2.plot(kind='kde', ax=ax2, color='green')
_ = ax2.set_ylabel('')
_ = ax.set_title(f'{name}')
_ = ax.set_ylabel('')
plt.tight_layout()
Bibliography¶
- CGH97
E. Castillo, J.M. Gutierrez, and A.S. Hadi. Expert Systems and Probabilistic Network Models. Springer, 1997.
- Cow98
R.G. Cowell. Advanced inference in bayesian networks. In M.I. Jordan, editor, Learning in Graphical Models. A Bradford Book, 1998.
- Hen88
M. Henrion. Propagating uncertainty in bayesian networks by probabilistic logic sampling. Uncertainty in Artificial Intelligence, 1988.
- HD99
C. Huang and A. Darwiche. Inference in belief networks: a procedural guide. International Journal of Approximate Reasoning, 1999.
- IC02
J.S. Ide and F.G. Cozman. Random generation of bayesian network. Advances in Artificial Intelligence, 2002.
- Kol09
D. Koller. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.
- Mur12
K.P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
- Pea88
J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 1988.
- Pea00
J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2000.
- Pea16
J. Pearl. Causal Inference in Statistics - A Primer. Wiley, 2016.
- Pea18
J. Pearl. The Book of Why: The New Science of Cause and Effect. Basic Books, 2018.
py-bbn¶
Subpackages¶
Graph¶
Variable¶
Variable.
- class pybbn.graph.variable.Variable(id, name, values)¶
Bases:
object
A variable.
- __init__(id, name, values)¶
Ctor.
- Parameters
id – Numeric identifier. e.g. 0
name – Name. e.g. ‘a’
values – Array of values. e.g. [‘on’, ‘off’]
- to_dict()¶
Gets a JSON serializable dictionary representation.
- Returns
Dictionary.
Node¶
Nodes. There are many types: nodes, cliques, belief network nodes and separation sets.
- class pybbn.graph.node.BbnNode(variable, probs)¶
Bases:
pybbn.graph.node.Node
A BBN node.
- get_weight()¶
Gets the weight, which is the number of values.
- Returns
Weight.
- to_dict()¶
Gets a JSON serializable dictionary representation.
- Returns
Dictionary.
- class pybbn.graph.node.Clique(nodes)¶
Bases:
pybbn.graph.node.Node
A clique.
- contains(id)¶
Checks if this clique contains the specified ID.
- Parameters
id – Numeric id.
- Returns
A boolean indicating if the specified id exists in this clique.
- get_node_ids()¶
Gets the node IDs in this clique.
- Returns
An array of numeric ids of the nodes in this clique.
- get_sep_set(that)¶
Creates a separation-set from this node and the one passed in. The separation-set is composed of the intersection of the two cliques. If this node has [0, 1, 2] and the node passed in has [1, 2, 3], then the separation set will be [1, 2].
- Parameters
that – Clique.
- Returns
Separation-set.
- get_sid()¶
Gets the string ID of this clique.
- Returns
String ID composed of the sorted corresponding variables in each node.
- get_weight()¶
Gets the weight of this clique; the weight is product of the weights of the nodes in this clique.
- Returns
Weight.
- intersects(that)¶
Gets intersection information.
- Parameters
that – Clique.
- Returns
Tuple where first item is a boolean indicating if there is any intersection, second item are the IDs in this clique, third item are the IDs of that clique and last item are IDs common to both Cliques.
- is_marked()¶
Checks if this clique is marked.
- Returns
A boolean indicating if the clique is marked.
- is_superset(that)¶
Checks if this clique is a superset of that clique.
- Parameters
that – Clique.
- Returns
A boolean indicating if this clique is a superset of the clique passed in.
- mark()¶
Marks this clique.
- unmark()¶
Unmarks this clique.
- class pybbn.graph.node.Node(id)¶
Bases:
object
A node.
- add_metadata(k, v)¶
Adds metadata.
- Parameters
k – Key. Typically a string value.
v – Value. Any object.
- class pybbn.graph.node.SepSet(left, right, lhs=None, rhs=None, intersection=None)¶
Bases:
pybbn.graph.node.Clique
Separation-set.
- property cost¶
Gets the cost.
- Returns
The cost.
- get_cost()¶
The cost is the sum of the weights of the cliques connected to this separation-set.
- Returns
Cost.
- get_mass()¶
The mass is the number of nodes in this separation-set.
- Returns
Mass.
- property is_empty¶
Checks if the cliques in this separation set have an empty intersection.
- Returns
A boolean indicating if there is no intersection.
- property mass¶
Gets the mass.
- Returns
The mass.
Edge¶
Edges. There are two main types: undirected and directed. However, many other types exists as well.
- class pybbn.graph.edge.Edge(i, j, type)¶
Bases:
object
Edge.
- __init__(i, j, type)¶
Ctor.
- Parameters
i – Node.
j – Node.
type – Edge type.
- property key¶
Key used for map.
- Returns
Key.
- class pybbn.graph.edge.JtEdge(sep_set)¶
Bases:
pybbn.graph.edge.Edge
Junction tree edge. This is basically a hyper-edge.
- __init__(sep_set)¶
Ctor.
- Parameters
sep_set – Separation set.
- get_lhs_edge()¶
Gets a JtEdge. e.g. left – sep_set.
- Returns
JtEdge.
- get_rhs_edge()¶
Gets a JtEdge. e.g. right – sep_set.
- Returns
JtEdge.
- class pybbn.graph.edge.SepSetEdge(i, j)¶
Bases:
pybbn.graph.edge.Edge
Separation set.
- __init__(i, j)¶
Ctor.
- Parameters
i – Node.
j – Node.
Graph¶
Basic graphs.
- class pybbn.graph.graph.Graph¶
Bases:
object
Graph.
- __init__()¶
Ctor.
- add_edge(edge)¶
Adds an edge.
- Parameters
edge – Edge.
- Returns
This graph.
- add_node(node)¶
Adds a node.
- Parameters
node – Node.
- Returns
This graph.
- edge_exists(id1, id2)¶
Checks if the specified edge id1 – id2 exists.
- Parameters
id1 – Node id.
id2 – Node id.
- Returns
A boolean indicating if the specified edge exists.
- get_edges()¶
Gets all the edges.
- Returns
List of edges.
- get_neighbors(id)¶
Gets the neighbors of the specified node.
- Parameters
id – Node id.
- Returns
Set of neighbors of the specified node.
- get_node(id)¶
Gets the node associated with the specified id.
- Parameters
id – Node id.
- Returns
Node.
- get_nodes()¶
Gets all the nodes.
- Returns
List of nodes.
- remove_node(id)¶
Removes a node from the graph.
- Parameters
id – Node id.
- class pybbn.graph.graph.Ug¶
Bases:
pybbn.graph.graph.Graph
Undirected graph.
- __init__()¶
Ctor.
Directed Acyclic Graph¶
Directed acyclic graphs.
- class pybbn.graph.dag.Bbn¶
Bases:
pybbn.graph.dag.Dag
BBN.
- __init__()¶
Ctor.
- static from_csv(path)¶
Converts the BBN in CSV format to a BBN. :param path: Path to CSV file. :return: BBN.
- static from_dict(d)¶
Creates a BBN from a dictionary (deserialized JSON).
- Parameters
d – Dictionary.
- Returns
BBN.
- static from_json(path)¶
Deserializes BBN from JSON.
- Parameters
path – Path.
- Returns
BBN.
- get_parents_ordered(id)¶
Gets the IDs of the specified node ordered.
- Parameters
id – ID of node.
- Returns
List of parent IDs sorted.
- static to_csv(bbn, path)¶
Converts the specified BBN to CSV format.
- Parameters
bbn – BBN.
path – Path to file.
- Returns
None.
- static to_dict(bbn)¶
Gets a JSON serializable dictionary representation.
- Parameters
bbn – BBN.
- Returns
Dictionary.
- static to_dne(bbn, bnet_name='network')¶
- static to_json(bbn, path)¶
Serializes BBN to JSON.
- Parameters
bbn – BBN.
path – Path.
- Returns
None.
- class pybbn.graph.dag.BbnUtil¶
Bases:
object
BBN utility.
- static get_huang_graph()¶
Gets the Huang reference BBN graph.
- Returns
BBN.
- static get_simple()¶
Gets a simple BBN graph.
- Returns
BBN.
- class pybbn.graph.dag.Dag¶
Bases:
pybbn.graph.graph.Graph
Directed acyclic graph.
- __init__()¶
Ctor.
- edge_exists(id1, id2)¶
Checks if a directed edge exists between the specified id. e.g. id1 -> id2
- Parameters
id1 – Node id.
id2 – Node id.
- Returns
A boolean indicating if a directed edge id1 -> id2 exists.
- get_children(node_id)¶
Gets the children IDs of the specified node.
- Parameters
node_id – Node id.
- Returns
Array of children ids.
- get_i2n()¶
Gets a map of node identifiers to names.
- Returns
Dictionary.
- get_n2i()¶
Gets a map of node names to identifiers.
- Returns
Dictionary.
- get_parents(id)¶
Gets the parent IDs of the specified node.
- Parameters
id – Node id.
- Returns
Array of parent ids.
- to_nx_graph()¶
Converts this DAG to a NX DiGraph for visualization.
- Returns
A tuple, where the first item is the NX DiGraph and the second items are the node labels.
Partially Directed Acylic Graph¶
Partially directed acylic graphs.
- class pybbn.graph.pdag.PathDetector(graph, start, stop)¶
Bases:
object
Detects path between two nodes.
- __init__(graph, start, stop)¶
Ctor.
- Parameters
graph – Pdag.
start – Start node id.
stop – Stop node id.
- exists()¶
Checks if a path exists.
- Returns
True if a path exists, otherwise, false.
- class pybbn.graph.pdag.Pdag¶
Bases:
pybbn.graph.graph.Graph
Partially directed acyclic graph.
- __init__()¶
Ctor.
- directed_edge_exists(id1, id2)¶
Checks if the specified edge id1 -> id2 exists.
- Parameters
id1 – Node id.
id2 – Node id.
- Returns
A boolean indicating if the edge exists.
- edge_exists(id1, id2)¶
Checks if the specified edge id1 – id2 exists.
- Parameters
id1 – Node id.
id2 – Node id.
- Returns
A boolean indicating if the edge exists.
- get_out_nodes(id)¶
Gets all the out nodes for the node with the specified id. Out nodes are all connected nodes that are not parents (do not have a directed arc into the specified node).
- Parameters
id – Node id.
- Returns
Array of out node ids.
- get_parents(id)¶
Gets the parent of the specified node id.
- Parameters
id – Node id.
- Returns
Array of parent ids.
Join Tree¶
Join trees or junction trees.
- class pybbn.graph.jointree.ChangeType(value)¶
Bases:
enum.Enum
Change type.
- NONE = 1¶
- RETRACTION = 3¶
- UPDATE = 2¶
- class pybbn.graph.jointree.Evidence(node, type)¶
Bases:
object
Evidence.
- __init__(node, type)¶
Ctor.
- Parameters
node – BBN node.
type – EvidenceType.
- add_value(value, likelihood)¶
Adds a value.
- Parameters
value – Value.
likelihood – Likelihood.
- Returns
This evidence.
- compare(potentials)¶
Compares this evidence with previous ones.
- Parameters
potentials – Map of potentials.
- Returns
The ChangeType from the comparison.
- validate()¶
Validates this evidence.
virtual evidence: each likelihood must be in the range [0, 1].
finding evidence: all likelihoods must be exactly 1.0 or 0.0.
observation evidence: exactly one likelihood is 1.0 and all others must be 0.0.
- class pybbn.graph.jointree.EvidenceBuilder¶
Bases:
object
Evidence builder.
- __init__()¶
Ctor.
- build()¶
Builds an evidence.
- Returns
Evidence.
- with_evidence(val, likelihood)¶
Adds evidence.
- Parameters
val – Value.
likelihood – Likelihood.
- Returns
Builder.
- with_node(node)¶
Adds a BBN node.
- Parameters
node – BBN node.
- Returns
Builder.
- with_type(type)¶
Adds the EvidenceType.
- Parameters
type – EvidenceType.
- Returns
Builder.
- class pybbn.graph.jointree.EvidenceType(value)¶
Bases:
enum.Enum
Evidence type.
- FINDING = 2¶
- OBSERVATION = 3¶
- UNOBSERVE = 4¶
- VIRTUAL = 1¶
- class pybbn.graph.jointree.JoinTree¶
Bases:
pybbn.graph.graph.Ug
Join tree.
- __init__()¶
Ctor.
- add_edge(edge)¶
Adds an JtEdge.
- Parameters
edge – JtEdge.
- Returns
This join tree.
- add_potential(clique, potential)¶
Adds a potential associated with the specified clique.
- Parameters
clique – Clique.
potential – Potential.
- Returns
This join tree.
- find_cliques_with_node_and_parents(id)¶
Finds all cliques in this junction tree having the specified node and its parents.
- Parameters
id – Node id.
- Returns
Array of cliques.
- static from_dict(d)¶
Converts a dictionary to a junction tree.
- Parameters
d – Dictionary.
- Returns
Junction tree.
- get_bbn_node(id)¶
Gets the BBN node associated with the specified id.
- Parameters
id – Node id.
- Returns
BBN node or None if no such node exists.
- get_bbn_node_and_parents()¶
Gets a map of nodes and its parents.
- Returns
Map. Keys are node ID and values are list of nodes.
- get_bbn_node_by_name(name)¶
Gets the BBN node associated with the specified name.
- Parameters
name – Node name.
- Returns
BBN node or None if no such node exists.
- get_bbn_nodes()¶
Gets all the BBN nodes in this junction tree.
- Returns
List of BBN nodes.
- get_bbn_potential(node)¶
Gets the potential associated with the specified BBN node.
- Parameters
node – BBN node.
- Returns
Potential.
- get_change_type(evidences)¶
Gets the change type associated with the specified list of evidences.
- Parameters
evidences – List of evidences.
- Returns
ChangeType.
- get_cliques()¶
Gets all the cliques in this junction tree.
- Returns
Array of cliques.
- get_evidence(node, value)¶
Gets the evidence associated with the specified BBN node and value.
- Parameters
node – BBN node.
value – Value.
- Returns
Potential (the evidence).
- get_flattened_edges()¶
Gets all the edges “flattened” out. Since separation-sets are really hyper-edges, this method breaks separation-sets into two edges.
- Returns
Array of edges.
- get_posteriors()¶
Gets the posterior for all nodes.
- Returns
Map. Keys are node names; values are map of node values to posterior probabilities.
- get_sep_sets()¶
Gets all the separation sets in this junction tree.
- Returns
Array of separation sets.
- get_unobserved_evidence(node)¶
Gets the unobserved evidences associated with the specified node.
- Parameters
node – BBN node.
- Returns
Evidence.
- set_listener(listener)¶
Sets the listener.
- Parameters
listener – JoinTreeListener.
- set_observation(evidence)¶
Sets a single observation.
- Parameters
evidence – Evidence.
- Returns
This join tree.
- static to_dict(jt, bbn)¶
Converts a junction tree to a serializable dictionary.
- Parameters
jt – Junction tree.
bbn – BBN.
- Returns
Dictionary.
- unmark_cliques()¶
Unmarks the cliques.
- unobserve(nodes)¶
Unobserves a list of nodes.
- Parameters
nodes – List of nodes.
- Returns
This join tree.
- unobserve_all()¶
Unobserves all BBN nodes.
- Returns
This join tree.
- update_bbn_cpts(cpts)¶
Updates the CPTs of the BBN nodes.
- Parameters
cpts – Dictionary of CPTs. Keys are ids of BBN node and values are new CPTs.
- Returns
None
- update_evidences(evidences)¶
Updates this join tree with the list of specified evidence.
- Parameters
evidences – List of evidences.
- Returns
This join tree.
- class pybbn.graph.jointree.JoinTreeListener¶
Bases:
object
Interface like class used for listening to a join tree.
- evidence_retracted(join_tree)¶
Evidence is retracted.
- Parameters
join_tree – Join tree.
- evidence_updated(join_tree)¶
Evidence is updated.
- Parameters
join_tree – Join tree.
- class pybbn.graph.jointree.PathDetector(graph, start, stop)¶
Bases:
object
Detects path between two nodes.
- __init__(graph, start, stop)¶
Ctor.
- Parameters
graph – Join tree.
start – Start node id.
stop – Stop node id.
- exists()¶
Checks if a path exists.
- Returns
True if a path exists, otherwise, false.
Factory¶
Factories.
- class pybbn.graph.factory.Factory¶
Bases:
object
Factory to convert other API BBNs into py-bbn.
- static from_data(structure, df)¶
Creates a BBN.
- Parameters
structure – A dictionary where keys are names of children and values are list of parent names.
df – A dataframe.
- Returns
BBN.
- static from_libpgm_discrete_dictionary(d)¶
Converts a libpgm discrete network as specified by a dictionary into a py-bbn one. Look at https://pythonhosted.org/libpgm/unittestdict.html.
- Parameters
d – A dictionary representing a libpgm discrete network.
- Returns
py-bbn BBN.
- static from_libpgm_discrete_json(j)¶
Converts a libpgm discrete network as specified by a JSON string into a py-bbn one. Look at https://pythonhosted.org/libpgm/unittestdict.html.
- Parameters
j – String representing JSON.
- Returns
py-bbn BBN.
- static from_libpgm_discrete_object(bn)¶
Converts a libpgm discrete network object into a py-bbn one.
- Parameters
bn – libpgm discrete BBN.
- Returns
py-bbn BBN.
Potential¶
Potentials.
- class pybbn.graph.potential.Potential¶
Bases:
object
Potential.
- __init__()¶
Ctor.
- add_entry(entry)¶
Adds a PotentialEntry.
- Parameters
entry – PotentialEntry.
- Returns
This potential.
- get_matching_entries(entry)¶
Gets all potential entries matching the specified entry.
- Parameters
entry – PotentialEntry.
- Returns
Array of matching potential entries.
- static to_dict(potentials)¶
Converts potential to dictionary for easy validation.
- Parameters
potentials – Potential.
- Returns
Dictionary representation. Keys are entries and values are probabilities.
- class pybbn.graph.potential.PotentialEntry¶
Bases:
object
Potential entry.
- __init__()¶
Ctor.
- add(k, v)¶
Adds a node id and its value.
- Parameters
k – Node id.
v – Value.
- Returns
This potential entry.
- duplicate()¶
Duplicates this entry.
- Returns
PotentialEntry.
- get_entry_keys()¶
Gets entry keys sorted.
- Returns
List of tuples. First tuple is id of variable and second tuple is value of variable.
- get_kv()¶
Gets key-value pair that may be used for storage in dictionary.
- Returns
Key-value pair.
- matches(that)¶
Checks if this potential entry matches the specified one. A match is determined with all the keys and their associated values in the potential entry passed in matches this one.
- Parameters
that – PotentialEntry.
- Returns
- class pybbn.graph.potential.PotentialUtil¶
Bases:
object
Potential util.
- static divide(numerator, denominator)¶
Divides two potentials.
- Parameters
numerator – Potential.
denominator – Potential.
- Returns
Potential.
- static get_cartesian_product(lists)¶
Gets the cartesian product of a list of lists of values. For example, if the list is
[ [‘on’, ‘off’], [‘on’, ‘off’] ]
then the result will be a list of the following
[ ‘on’, ‘on’]
[ ‘on’, ‘off’ ]
[ ‘off’, ‘on’ ]
[ ‘off’, ‘off’ ]
- Parameters
lists – List of list of values.
- Returns
Cartesian product of values.
- static get_potential(node, parents)¶
Gets the potential associated with the specified node and its parents.
- Parameters
node – BBN node.
parents – Parents of the BBN node (that themselves are also BBN nodes).
- Returns
Potential.
- static get_potential_from_nodes(nodes)¶
Gets a potential from a list of BBN nodes.
- Parameters
nodes – Array of BBN nodes.
- Returns
Potential.
- static is_zero(d)¶
Checks if the specified value is 0.0.
- Parameters
d – Value.
- Returns
A boolean indicating if the value is zero.
- static marginalize_for(join_tree, clique, nodes)¶
Marginalizes the specified clique’s potential over the specified nodes.
- Parameters
join_tree – Join tree.
clique – Clique.
nodes – List of BBN nodes.
- Returns
Potential.
- static merge(node, parents)¶
Merges the nodes into one array.
- Parameters
node – BBN node.
parents – BBN parent nodes.
- Returns
Array of BBN nodes.
- static multiply(bigger, smaller)¶
Multiplies two potentials. Order matters.
- Parameters
bigger – Bigger potential.
smaller – Smaller potential.
- static normalize(potential)¶
Normalizes the potential (make sure they sum to 1.0).
- Parameters
potential – Potential.
- Returns
Potential.
- static pass_single_message(join_tree, x, s, y)¶
Single message pass from x – s – y (from x to s to y).
- Parameters
join_tree – Join tree.
x – Clique.
s – Separation-set.
y – Clique.
Utilities¶
Utilities to make life easier.
Junction Tree Algorithm¶
Inference Control¶
Used in controlling exact inference.
- class pybbn.pptc.inferencecontroller.InferenceController¶
Bases:
pybbn.graph.jointree.JoinTreeListener
Inference controller.
- static apply(bbn)¶
Sets up the specified BBN for probability propagation in tree clusters (PPTC).
- Parameters
bbn – BBN graph.
- Returns
Join tree.
- static apply_from_serde(join_tree)¶
Applies propagation to join tree from a deserialzed join tree.
- Parameters
join_tree – Join tree.
- Returns
Join tree (the same one passed in).
- evidence_retracted(join_tree)¶
Evidence is retracted.
- Parameters
join_tree – Join tree.
- evidence_updated(join_tree)¶
Evidence is updated.
- Parameters
join_tree – Join tree.
- static reapply(join_tree, cpts)¶
Reapply propagation to join tree with new CPTs. The join tree structure is kept but the BBN node CPTs are updated. A new instance/copy of the join tree will be returned.
- Parameters
join_tree – Join tree.
cpts – Dictionary of new CPTs. Keys are id’s of nodes and values are new CPTs.
- Returns
Join tree.
Potential Initialization¶
Used to initialize potentials.
Moralization¶
Moralization of a directed acyclic graph.
Triangulation¶
Triangulates a moralized graph.
- class pybbn.pptc.triangulator.NodeClique(node, neighbors, weight, edges)¶
Bases:
object
Node clique.
- __init__(node, neighbors, weight, edges)¶
Ctor.
- Parameters
node – BBN node.
neighbors – BBN nodes (neighbors).
weight – Weight.
edges – Edges.
- get_bbn_nodes()¶
Gets all the BBN nodes in this node clique.
- Returns
Array of BBN nodes.
- class pybbn.pptc.triangulator.Triangulator¶
Bases:
object
Triangulator. Triangulates an undirected moralized graph and produces cliques in the process.
- static duplicate(g)¶
Duplicates a undirected graph.
- Parameters
g – Undirected graph.
- Returns
Undirected graph.
- static generate_cliques(m)¶
Generates a list of node cliques.
- Parameters
m – Graph.
- Returns
List of NodeCliques.
- static get_edges_to_add(n, m)¶
Gets edges to add.
- Parameters
n – BBN node.
m – Graph.
- Returns
Array of edges.
- static get_weight(n, m)¶
Gets the weight of a BBN node. The weight of a node is the product of the its weight with all its neighbors’ weight.
- Parameters
n – BBN node.
m – Graph.
- Returns
Weight.
- static is_subset(cliques, clique)¶
Checks if the specified clique is a subset of the specified list of cliques.
- Parameters
cliques – List of cliques.
clique – Clique.
- Returns
A boolean indicating if the clique is a subset.
- static select_node(m)¶
Selects a clique from the specified graph. Cliques are sorted by number of edges, weight, and id (asc).
- Parameters
m – Graph.
- Returns
Clique.
- static triangulate(m)¶
Triangulates the specified moralized graph.
- Parameters
m – Moralized undirected graph.
- Returns
Array of cliques.
Transformation¶
Transforms the cliques found from triangulation into a junction tree.
- class pybbn.pptc.transformer.Transformer¶
Bases:
object
Transformer. Transforms a list of cliques into a join tree.
- static get_sep_sets(cliques)¶
Gets all pair-wise separation-sets.
- Parameters
cliques – Array of cliques.
- Returns
Array of separation sets sorted descendingly by mass followed by cost (asc) and id (asc).
- static transform(cliques)¶
Transforms the cliques into a join tree.
- Parameters
cliques – List of cliques.
- Returns
Join tree.
Initialization¶
Initializes a junction tree.
- class pybbn.pptc.initializer.Initializer¶
Bases:
object
Initializes the join tree.
- static get_clique(node, join_tree)¶
Gets the parent clique associated with the specified BBN node.
- Parameters
node – BBN node.
join_tree – Join tree.
- Returns
Parent clique.
- static initialize(join_tree)¶
Starts the initialization.
- Parameters
join_tree – Join tree.
- Returns
Join tree.
Propagation¶
Propagates evidences in a junction tree.
- class pybbn.pptc.propagator.Propagator¶
Bases:
object
Evidence propagator.
- static collect_evidence(join_tree, start)¶
Collects evidence.
- Parameters
join_tree – Join tree.
start – Start clique.
- static distribute_evidence(join_tree, start)¶
Distributes evidence.
- Parameters
join_tree – Join tree.
start – Start clique.
- static propagate(join_tree)¶
Propagates evidence.
- Parameters
join_tree – Join tree.
- Returns
Join tree.
Evidence Distribution¶
Distributes evidences.
- class pybbn.pptc.evidencedistributor.EvidenceDistributor(join_tree, start_clique)¶
Bases:
object
Evidence distributor. Passes messages using breadth-first-search (BFS). Messages are passed from the start clique to the far remote cliques.
- __init__(join_tree, start_clique)¶
Ctor.
- Parameters
join_tree – Join tree.
start_clique – Start clique.
- start()¶
Starts the evidence distribution.
Evidence Collection¶
Collects evidences.
- class pybbn.pptc.evidencecollector.EvidenceCollector(join_tree, start_clique)¶
Bases:
object
Evidence collector. Passes messages using depth-first-search (DFS). Messages are passed from the far remote cliques back to the start clique.
- __init__(join_tree, start_clique)¶
Ctor.
- Parameters
join_tree – Join tree.
start_clique – Start clique.
- start()¶
Starts the evidence collection.
Sampling¶
Use this module for sampling.
- class pybbn.sampling.sampling.LogicSampler(bbn)¶
Bases:
object
Logic sampling with rejection.
- __init__(bbn)¶
Ctor.
- Parameters
bbn – BBN.
- get_samples(evidence={}, n_samples=100, seed=37)¶
Gets the samples.
- Parameters
evidence – Evidence. Dictionary. Keys are ids and values are node values.
n_samples – Number of samples.
seed – Seed (default=37).
- Returns
Samples.
- class pybbn.sampling.sampling.SortableNode(node_id, parent_ids)¶
Bases:
object
Sortable node.
- __init__(node_id, parent_ids)¶
Ctor.
- Parameters
node_id – Node ID.
parent_ids – List of parent IDs.
- class pybbn.sampling.sampling.Table(node, parents=[])¶
Bases:
object
Table association parent instantiations with cumulative distributions of node values.
- __init__(node, parents=[])¶
Ctor.
- Parameters
node – BBN node.
parents – List of parent BBN nodes.
- get_value(prob, sample=None)¶
Gets the value associated with the specified probability.
- Parameters
prob – Probability.
sample – Dictionary of variable-value sampled so far.
- Returns
Value.
- has_parents()¶
Checks if the node associated with this table has parents.
- Returns
Boolean.
Generator¶
Used this package to create realistic Bayesian belief networks.
- pybbn.generator.bbngenerator.convert_for_drawing(bbn)¶
Converts a BBN to a networkx graph for drawing.
- Parameters
bbn – BBN.
- Returns
Directed acyclic graph.
- pybbn.generator.bbngenerator.convert_for_exact_inference(g, p)¶
Converts the graph and parameters to a BBN.
- Parameters
g – Directed acyclic graph (DAG in the form of networkx).
p – Parameters.
- Returns
BBN.
- pybbn.generator.bbngenerator.generate_bbn_to_file(n, file_path, bbn_type='singly', max_iter=10, max_values=2, max_alpha=10)¶
Generates a BBN and saves it to a file.
- Parameters
n – Number of nodes.
file_path – File path. JSON and CSV supported. Export will be determined by path extension.
bbn_type – Type: singly or multi.
max_iter – Maximum iterations.
max_values – Maximum values.
max_alpha – Maximum alpha.
- Returns
None.
- pybbn.generator.bbngenerator.generate_multi_bbn(n, max_iter=10, max_values=2, max_alpha=10)¶
Generates structure and parameters for a multi-connected BBN.
- Parameters
n – Number of nodes.
max_iter – Maximum iterations.
max_values – Maximum values per node.
max_alpha – Maximum alpha per value (hyperparameters).
- Returns
A tuple of structure and parameters.
- pybbn.generator.bbngenerator.generate_singly_bbn(n, max_iter=10, max_values=2, max_alpha=10)¶
Generates structure and parameters for a singly-connected BBN.
- Parameters
n – Number of nodes.
max_iter – Maximum iterations.
max_values – Maximum values per node.
max_alpha – Maximum alpha per value (hyperparameters).
- Returns
A tuple of structure and parameters.
- pybbn.generator.bbngenerator.to_json(g, params, pretty=False)¶
Serializes the graph to JSON.
- Parameters
g – Graph.
params – Parameters.
pretty – Pretty-print serialization flag.
- Returns
None.
Causality¶
Average Causal Effect¶
Use this package to compute the Average Causal Effect
.
Gaussian Package¶
Inference¶
Use this module to do inference in Gaussian Bayesian Belief Networks.
- class pybbn.gaussian.inference.GaussianInference(H, M, E, meta={})¶
Bases:
object
Gaussian inference.
- property P¶
Gets the univariate parameters of each variable.
- Returns
Dictionary. Keys are variable names. Values are tuples of (mean, variance).
- __init__(H, M, E, meta={})¶
ctor.
- Parameters
H – Headers.
M – Means.
E – Covariance matrix.
meta – Dictionary storing observations.
- do_inference(name, observation)¶
Performs inference. Simply calls the do_inferences method.
- Parameters
name – Name of variable.
observation – Observation value.
- Returns
GaussianInference.
- do_inferences(observations)¶
Performs inference.
Denote the following.
\(z\) as the variable observed
\(y\) as the set of other variables
- \(\mu\) as the vector of means
\(\mu_z\) as the partitioned \(\mu\) of length \(|z|\)
\(\mu_y\) as the partitioned \(\mu\) of length \(|y|\)
- \(\Sigma\) as the covariance matrix
\(\Sigma_{yz}\) as the partitioned \(\Sigma\) of \(|y|\) rows and \(|z|\) columns
\(\Sigma_{zz}\) as the partitioned \(\Sigma\) of \(|z|\) rows and \(|z|\) columns
\(\Sigma_{yy}\) as the partitioned \(\Sigma\) of \(|y|\) rows and \(|y|\) columns
If we observe evidence \(z_e\), then the new means \(\mu_y^{*}\) and covariance matrix \(\Sigma_y^{*}\) corresponding to \(y\) are computed as follows.
\(\mu_y^{*} = \mu_y - \Sigma_{yz} \Sigma_{zz} (z_e - \mu_z)\)
\(\Sigma_y^{*} = \Sigma_{yy} \Sigma_{zz} \Sigma_{yz}^{T}\)
- Parameters
observations – List of observation. Each observation is tuple (name, value).
- Returns
GaussianInference.
- property marginals¶
Gets the marginals.
- Returns
List of dictionary. Each element has name, mean and variance.
- sample_marginals(size=1000)¶
Samples data from the marginals.
- Parameters
size – Number of samples.
- Returns
Dictionary with keys as names and values as pandas series (sampled data).
Indices and tables¶
Copyright¶
Software¶
Copyright 2017 Jee Vang
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Art¶
Copyright 2020 Daytchia Vang
Citation¶
@misc{vang_2017,
title={PyBBN},
url={https://github.com/vangj/py-bbn/},
author={Vang, Jee},
year={2017},
month={Jan}}