Generator¶
Used this package to create realistic Bayesian belief networks.
- pybbn.generator.bbngenerator.convert_for_drawing(bbn)¶
Converts a BBN to a networkx graph for drawing.
- Parameters
bbn – BBN.
- Returns
Directed acyclic graph.
- pybbn.generator.bbngenerator.convert_for_exact_inference(g, p)¶
Converts the graph and parameters to a BBN.
- Parameters
g – Directed acyclic graph (DAG in the form of networkx).
p – Parameters.
- Returns
BBN.
- pybbn.generator.bbngenerator.generate_bbn_to_file(n, file_path, bbn_type='singly', max_iter=10, max_values=2, max_alpha=10)¶
Generates a BBN and saves it to a file.
- Parameters
n – Number of nodes.
file_path – File path. JSON and CSV supported. Export will be determined by path extension.
bbn_type – Type: singly or multi.
max_iter – Maximum iterations.
max_values – Maximum values.
max_alpha – Maximum alpha.
- Returns
None.
- pybbn.generator.bbngenerator.generate_multi_bbn(n, max_iter=10, max_values=2, max_alpha=10)¶
Generates structure and parameters for a multi-connected BBN.
- Parameters
n – Number of nodes.
max_iter – Maximum iterations.
max_values – Maximum values per node.
max_alpha – Maximum alpha per value (hyperparameters).
- Returns
A tuple of structure and parameters.
- pybbn.generator.bbngenerator.generate_singly_bbn(n, max_iter=10, max_values=2, max_alpha=10)¶
Generates structure and parameters for a singly-connected BBN.
- Parameters
n – Number of nodes.
max_iter – Maximum iterations.
max_values – Maximum values per node.
max_alpha – Maximum alpha per value (hyperparameters).
- Returns
A tuple of structure and parameters.
- pybbn.generator.bbngenerator.to_json(g, params, pretty=False)¶
Serializes the graph to JSON.
- Parameters
g – Graph.
params – Parameters.
pretty – Pretty-print serialization flag.
- Returns
None.