Graph

Variable

Variable.

class pybbn.graph.variable.Variable(id, name, values)

Bases: object

A variable.

__init__(id, name, values)

Ctor.

Parameters
  • id – Numeric identifier. e.g. 0

  • name – Name. e.g. ‘a’

  • values – Array of values. e.g. [‘on’, ‘off’]

to_dict()

Gets a JSON serializable dictionary representation.

Returns

Dictionary.

Node

Nodes. There are many types: nodes, cliques, belief network nodes and separation sets.

class pybbn.graph.node.BbnNode(variable, probs)

Bases: pybbn.graph.node.Node

A BBN node.

get_weight()

Gets the weight, which is the number of values.

Returns

Weight.

to_dict()

Gets a JSON serializable dictionary representation.

Returns

Dictionary.

class pybbn.graph.node.Clique(nodes)

Bases: pybbn.graph.node.Node

A clique.

contains(id)

Checks if this clique contains the specified ID.

Parameters

id – Numeric id.

Returns

A boolean indicating if the specified id exists in this clique.

get_node_ids()

Gets the node IDs in this clique.

Returns

An array of numeric ids of the nodes in this clique.

get_sep_set(that)

Creates a separation-set from this node and the one passed in. The separation-set is composed of the intersection of the two cliques. If this node has [0, 1, 2] and the node passed in has [1, 2, 3], then the separation set will be [1, 2].

Parameters

that – Clique.

Returns

Separation-set.

get_sid()

Gets the string ID of this clique.

Returns

String ID composed of the sorted corresponding variables in each node.

get_weight()

Gets the weight of this clique; the weight is product of the weights of the nodes in this clique.

Returns

Weight.

intersects(that)

Gets intersection information.

Parameters

that – Clique.

Returns

Tuple where first item is a boolean indicating if there is any intersection, second item are the IDs in this clique, third item are the IDs of that clique and last item are IDs common to both Cliques.

is_marked()

Checks if this clique is marked.

Returns

A boolean indicating if the clique is marked.

is_superset(that)

Checks if this clique is a superset of that clique.

Parameters

that – Clique.

Returns

A boolean indicating if this clique is a superset of the clique passed in.

mark()

Marks this clique.

unmark()

Unmarks this clique.

class pybbn.graph.node.Node(id)

Bases: object

A node.

add_metadata(k, v)

Adds metadata.

Parameters
  • k – Key. Typically a string value.

  • v – Value. Any object.

class pybbn.graph.node.SepSet(left, right, lhs=None, rhs=None, intersection=None)

Bases: pybbn.graph.node.Clique

Separation-set.

property cost

Gets the cost.

Returns

The cost.

get_cost()

The cost is the sum of the weights of the cliques connected to this separation-set.

Returns

Cost.

get_mass()

The mass is the number of nodes in this separation-set.

Returns

Mass.

property is_empty

Checks if the cliques in this separation set have an empty intersection.

Returns

A boolean indicating if there is no intersection.

property mass

Gets the mass.

Returns

The mass.

Edge

Edges. There are two main types: undirected and directed. However, many other types exists as well.

class pybbn.graph.edge.Edge(i, j, type)

Bases: object

Edge.

__init__(i, j, type)

Ctor.

Parameters
  • i – Node.

  • j – Node.

  • type – Edge type.

property key

Key used for map.

Returns

Key.

class pybbn.graph.edge.EdgeType(value)

Bases: enum.Enum

Edge type.

DIRECTED = 2
UNDIRECTED = 1
class pybbn.graph.edge.JtEdge(sep_set)

Bases: pybbn.graph.edge.Edge

Junction tree edge. This is basically a hyper-edge.

__init__(sep_set)

Ctor.

Parameters

sep_set – Separation set.

get_lhs_edge()

Gets a JtEdge. e.g. left – sep_set.

Returns

JtEdge.

get_rhs_edge()

Gets a JtEdge. e.g. right – sep_set.

Returns

JtEdge.

class pybbn.graph.edge.SepSetEdge(i, j)

Bases: pybbn.graph.edge.Edge

Separation set.

__init__(i, j)

Ctor.

Parameters
  • i – Node.

  • j – Node.

Graph

Basic graphs.

class pybbn.graph.graph.Graph

Bases: object

Graph.

__init__()

Ctor.

add_edge(edge)

Adds an edge.

Parameters

edge – Edge.

Returns

This graph.

add_node(node)

Adds a node.

Parameters

node – Node.

Returns

This graph.

edge_exists(id1, id2)

Checks if the specified edge id1 – id2 exists.

Parameters
  • id1 – Node id.

  • id2 – Node id.

Returns

A boolean indicating if the specified edge exists.

get_edges()

Gets all the edges.

Returns

List of edges.

get_neighbors(id)

Gets the neighbors of the specified node.

Parameters

id – Node id.

Returns

Set of neighbors of the specified node.

get_node(id)

Gets the node associated with the specified id.

Parameters

id – Node id.

Returns

Node.

get_nodes()

Gets all the nodes.

Returns

List of nodes.

remove_node(id)

Removes a node from the graph.

Parameters

id – Node id.

class pybbn.graph.graph.Ug

Bases: pybbn.graph.graph.Graph

Undirected graph.

__init__()

Ctor.

Directed Acyclic Graph

Directed acyclic graphs.

class pybbn.graph.dag.Bbn

Bases: pybbn.graph.dag.Dag

BBN.

__init__()

Ctor.

static from_csv(path)

Converts the BBN in CSV format to a BBN. :param path: Path to CSV file. :return: BBN.

static from_dict(d)

Creates a BBN from a dictionary (deserialized JSON).

Parameters

d – Dictionary.

Returns

BBN.

static from_json(path)

Deserializes BBN from JSON.

Parameters

path – Path.

Returns

BBN.

get_parents_ordered(id)

Gets the IDs of the specified node ordered.

Parameters

id – ID of node.

Returns

List of parent IDs sorted.

static to_csv(bbn, path)

Converts the specified BBN to CSV format.

Parameters
  • bbn – BBN.

  • path – Path to file.

Returns

None.

static to_dict(bbn)

Gets a JSON serializable dictionary representation.

Parameters

bbn – BBN.

Returns

Dictionary.

static to_dne(bbn, bnet_name='network')
static to_json(bbn, path)

Serializes BBN to JSON.

Parameters
  • bbn – BBN.

  • path – Path.

Returns

None.

class pybbn.graph.dag.BbnUtil

Bases: object

BBN utility.

static get_huang_graph()

Gets the Huang reference BBN graph.

Returns

BBN.

static get_simple()

Gets a simple BBN graph.

Returns

BBN.

class pybbn.graph.dag.Dag

Bases: pybbn.graph.graph.Graph

Directed acyclic graph.

__init__()

Ctor.

edge_exists(id1, id2)

Checks if a directed edge exists between the specified id. e.g. id1 -> id2

Parameters
  • id1 – Node id.

  • id2 – Node id.

Returns

A boolean indicating if a directed edge id1 -> id2 exists.

get_children(node_id)

Gets the children IDs of the specified node.

Parameters

node_id – Node id.

Returns

Array of children ids.

get_i2n()

Gets a map of node identifiers to names.

Returns

Dictionary.

get_n2i()

Gets a map of node names to identifiers.

Returns

Dictionary.

get_parents(id)

Gets the parent IDs of the specified node.

Parameters

id – Node id.

Returns

Array of parent ids.

to_nx_graph()

Converts this DAG to a NX DiGraph for visualization.

Returns

A tuple, where the first item is the NX DiGraph and the second items are the node labels.

class pybbn.graph.dag.PathDetector(graph, start, stop)

Bases: object

Detects path between two nodes.

__init__(graph, start, stop)

Ctor.

Parameters
  • graph – DAG.

  • start – Start node id.

  • stop – Stop node id.

exists()

Checks if a path exists.

Returns

True if a path exists, otherwise, false.

Partially Directed Acylic Graph

Partially directed acylic graphs.

class pybbn.graph.pdag.PathDetector(graph, start, stop)

Bases: object

Detects path between two nodes.

__init__(graph, start, stop)

Ctor.

Parameters
  • graph – Pdag.

  • start – Start node id.

  • stop – Stop node id.

exists()

Checks if a path exists.

Returns

True if a path exists, otherwise, false.

class pybbn.graph.pdag.Pdag

Bases: pybbn.graph.graph.Graph

Partially directed acyclic graph.

__init__()

Ctor.

directed_edge_exists(id1, id2)

Checks if the specified edge id1 -> id2 exists.

Parameters
  • id1 – Node id.

  • id2 – Node id.

Returns

A boolean indicating if the edge exists.

edge_exists(id1, id2)

Checks if the specified edge id1 – id2 exists.

Parameters
  • id1 – Node id.

  • id2 – Node id.

Returns

A boolean indicating if the edge exists.

get_out_nodes(id)

Gets all the out nodes for the node with the specified id. Out nodes are all connected nodes that are not parents (do not have a directed arc into the specified node).

Parameters

id – Node id.

Returns

Array of out node ids.

get_parents(id)

Gets the parent of the specified node id.

Parameters

id – Node id.

Returns

Array of parent ids.

Join Tree

Join trees or junction trees.

class pybbn.graph.jointree.ChangeType(value)

Bases: enum.Enum

Change type.

NONE = 1
RETRACTION = 3
UPDATE = 2
class pybbn.graph.jointree.Evidence(node, type)

Bases: object

Evidence.

__init__(node, type)

Ctor.

Parameters
  • node – BBN node.

  • type – EvidenceType.

add_value(value, likelihood)

Adds a value.

Parameters
  • value – Value.

  • likelihood – Likelihood.

Returns

This evidence.

compare(potentials)

Compares this evidence with previous ones.

Parameters

potentials – Map of potentials.

Returns

The ChangeType from the comparison.

validate()

Validates this evidence.

  • virtual evidence: each likelihood must be in the range [0, 1].

  • finding evidence: all likelihoods must be exactly 1.0 or 0.0.

  • observation evidence: exactly one likelihood is 1.0 and all others must be 0.0.

class pybbn.graph.jointree.EvidenceBuilder

Bases: object

Evidence builder.

__init__()

Ctor.

build()

Builds an evidence.

Returns

Evidence.

with_evidence(val, likelihood)

Adds evidence.

Parameters
  • val – Value.

  • likelihood – Likelihood.

Returns

Builder.

with_node(node)

Adds a BBN node.

Parameters

node – BBN node.

Returns

Builder.

with_type(type)

Adds the EvidenceType.

Parameters

type – EvidenceType.

Returns

Builder.

class pybbn.graph.jointree.EvidenceType(value)

Bases: enum.Enum

Evidence type.

FINDING = 2
OBSERVATION = 3
UNOBSERVE = 4
VIRTUAL = 1
class pybbn.graph.jointree.JoinTree

Bases: pybbn.graph.graph.Ug

Join tree.

__init__()

Ctor.

add_edge(edge)

Adds an JtEdge.

Parameters

edge – JtEdge.

Returns

This join tree.

add_potential(clique, potential)

Adds a potential associated with the specified clique.

Parameters
  • clique – Clique.

  • potential – Potential.

Returns

This join tree.

find_cliques_with_node_and_parents(id)

Finds all cliques in this junction tree having the specified node and its parents.

Parameters

id – Node id.

Returns

Array of cliques.

static from_dict(d)

Converts a dictionary to a junction tree.

Parameters

d – Dictionary.

Returns

Junction tree.

get_bbn_node(id)

Gets the BBN node associated with the specified id.

Parameters

id – Node id.

Returns

BBN node or None if no such node exists.

get_bbn_node_and_parents()

Gets a map of nodes and its parents.

Returns

Map. Keys are node ID and values are list of nodes.

get_bbn_node_by_name(name)

Gets the BBN node associated with the specified name.

Parameters

name – Node name.

Returns

BBN node or None if no such node exists.

get_bbn_nodes()

Gets all the BBN nodes in this junction tree.

Returns

List of BBN nodes.

get_bbn_potential(node)

Gets the potential associated with the specified BBN node.

Parameters

node – BBN node.

Returns

Potential.

get_change_type(evidences)

Gets the change type associated with the specified list of evidences.

Parameters

evidences – List of evidences.

Returns

ChangeType.

get_cliques()

Gets all the cliques in this junction tree.

Returns

Array of cliques.

get_evidence(node, value)

Gets the evidence associated with the specified BBN node and value.

Parameters
  • node – BBN node.

  • value – Value.

Returns

Potential (the evidence).

get_flattened_edges()

Gets all the edges “flattened” out. Since separation-sets are really hyper-edges, this method breaks separation-sets into two edges.

Returns

Array of edges.

get_posteriors()

Gets the posterior for all nodes.

Returns

Map. Keys are node names; values are map of node values to posterior probabilities.

get_sep_sets()

Gets all the separation sets in this junction tree.

Returns

Array of separation sets.

get_unobserved_evidence(node)

Gets the unobserved evidences associated with the specified node.

Parameters

node – BBN node.

Returns

Evidence.

set_listener(listener)

Sets the listener.

Parameters

listener – JoinTreeListener.

set_observation(evidence)

Sets a single observation.

Parameters

evidence – Evidence.

Returns

This join tree.

static to_dict(jt, bbn)

Converts a junction tree to a serializable dictionary.

Parameters
  • jt – Junction tree.

  • bbn – BBN.

Returns

Dictionary.

unmark_cliques()

Unmarks the cliques.

unobserve(nodes)

Unobserves a list of nodes.

Parameters

nodes – List of nodes.

Returns

This join tree.

unobserve_all()

Unobserves all BBN nodes.

Returns

This join tree.

update_bbn_cpts(cpts)

Updates the CPTs of the BBN nodes.

Parameters

cpts – Dictionary of CPTs. Keys are ids of BBN node and values are new CPTs.

Returns

None

update_evidences(evidences)

Updates this join tree with the list of specified evidence.

Parameters

evidences – List of evidences.

Returns

This join tree.

class pybbn.graph.jointree.JoinTreeListener

Bases: object

Interface like class used for listening to a join tree.

evidence_retracted(join_tree)

Evidence is retracted.

Parameters

join_tree – Join tree.

evidence_updated(join_tree)

Evidence is updated.

Parameters

join_tree – Join tree.

class pybbn.graph.jointree.PathDetector(graph, start, stop)

Bases: object

Detects path between two nodes.

__init__(graph, start, stop)

Ctor.

Parameters
  • graph – Join tree.

  • start – Start node id.

  • stop – Stop node id.

exists()

Checks if a path exists.

Returns

True if a path exists, otherwise, false.

Factory

Factories.

class pybbn.graph.factory.Factory

Bases: object

Factory to convert other API BBNs into py-bbn.

static from_data(structure, df)

Creates a BBN.

Parameters
  • structure – A dictionary where keys are names of children and values are list of parent names.

  • df – A dataframe.

Returns

BBN.

static from_libpgm_discrete_dictionary(d)

Converts a libpgm discrete network as specified by a dictionary into a py-bbn one. Look at https://pythonhosted.org/libpgm/unittestdict.html.

Parameters

d – A dictionary representing a libpgm discrete network.

Returns

py-bbn BBN.

static from_libpgm_discrete_json(j)

Converts a libpgm discrete network as specified by a JSON string into a py-bbn one. Look at https://pythonhosted.org/libpgm/unittestdict.html.

Parameters

j – String representing JSON.

Returns

py-bbn BBN.

static from_libpgm_discrete_object(bn)

Converts a libpgm discrete network object into a py-bbn one.

Parameters

bn – libpgm discrete BBN.

Returns

py-bbn BBN.

Potential

Potentials.

class pybbn.graph.potential.Potential

Bases: object

Potential.

__init__()

Ctor.

add_entry(entry)

Adds a PotentialEntry.

Parameters

entry – PotentialEntry.

Returns

This potential.

get_matching_entries(entry)

Gets all potential entries matching the specified entry.

Parameters

entry – PotentialEntry.

Returns

Array of matching potential entries.

static to_dict(potentials)

Converts potential to dictionary for easy validation.

Parameters

potentials – Potential.

Returns

Dictionary representation. Keys are entries and values are probabilities.

class pybbn.graph.potential.PotentialEntry

Bases: object

Potential entry.

__init__()

Ctor.

add(k, v)

Adds a node id and its value.

Parameters
  • k – Node id.

  • v – Value.

Returns

This potential entry.

duplicate()

Duplicates this entry.

Returns

PotentialEntry.

get_entry_keys()

Gets entry keys sorted.

Returns

List of tuples. First tuple is id of variable and second tuple is value of variable.

get_kv()

Gets key-value pair that may be used for storage in dictionary.

Returns

Key-value pair.

matches(that)

Checks if this potential entry matches the specified one. A match is determined with all the keys and their associated values in the potential entry passed in matches this one.

Parameters

that – PotentialEntry.

Returns

class pybbn.graph.potential.PotentialUtil

Bases: object

Potential util.

static divide(numerator, denominator)

Divides two potentials.

Parameters
  • numerator – Potential.

  • denominator – Potential.

Returns

Potential.

static get_cartesian_product(lists)

Gets the cartesian product of a list of lists of values. For example, if the list is

  • [ [‘on’, ‘off’], [‘on’, ‘off’] ]

then the result will be a list of the following

  • [ ‘on’, ‘on’]

  • [ ‘on’, ‘off’ ]

  • [ ‘off’, ‘on’ ]

  • [ ‘off’, ‘off’ ]

Parameters

lists – List of list of values.

Returns

Cartesian product of values.

static get_potential(node, parents)

Gets the potential associated with the specified node and its parents.

Parameters
  • node – BBN node.

  • parents – Parents of the BBN node (that themselves are also BBN nodes).

Returns

Potential.

static get_potential_from_nodes(nodes)

Gets a potential from a list of BBN nodes.

Parameters

nodes – Array of BBN nodes.

Returns

Potential.

static is_zero(d)

Checks if the specified value is 0.0.

Parameters

d – Value.

Returns

A boolean indicating if the value is zero.

static marginalize_for(join_tree, clique, nodes)

Marginalizes the specified clique’s potential over the specified nodes.

Parameters
  • join_tree – Join tree.

  • clique – Clique.

  • nodes – List of BBN nodes.

Returns

Potential.

static merge(node, parents)

Merges the nodes into one array.

Parameters
  • node – BBN node.

  • parents – BBN parent nodes.

Returns

Array of BBN nodes.

static multiply(bigger, smaller)

Multiplies two potentials. Order matters.

Parameters
  • bigger – Bigger potential.

  • smaller – Smaller potential.

static normalize(potential)

Normalizes the potential (make sure they sum to 1.0).

Parameters

potential – Potential.

Returns

Potential.

static pass_single_message(join_tree, x, s, y)

Single message pass from x – s – y (from x to s to y).

Parameters
  • join_tree – Join tree.

  • x – Clique.

  • s – Separation-set.

  • y – Clique.

Utilities

Utilities to make life easier.

class pybbn.graph.util.IdUtil

Bases: object

ID util.

static hash_string(s)

Hashes the string.

Parameters

s – String.

Returns

Hash value.