Sampling¶
Use this module for sampling.
- class pybbn.sampling.sampling.LogicSampler(bbn)¶
Bases:
object
Logic sampling with rejection.
- __init__(bbn)¶
Ctor.
- Parameters
bbn – BBN.
- get_samples(evidence={}, n_samples=100, seed=37)¶
Gets the samples.
- Parameters
evidence – Evidence. Dictionary. Keys are ids and values are node values.
n_samples – Number of samples.
seed – Seed (default=37).
- Returns
Samples.
- class pybbn.sampling.sampling.SortableNode(node_id, parent_ids)¶
Bases:
object
Sortable node.
- __init__(node_id, parent_ids)¶
Ctor.
- Parameters
node_id – Node ID.
parent_ids – List of parent IDs.
- class pybbn.sampling.sampling.Table(node, parents=[])¶
Bases:
object
Table association parent instantiations with cumulative distributions of node values.
- __init__(node, parents=[])¶
Ctor.
- Parameters
node – BBN node.
parents – List of parent BBN nodes.
- get_value(prob, sample=None)¶
Gets the value associated with the specified probability.
- Parameters
prob – Probability.
sample – Dictionary of variable-value sampled so far.
- Returns
Value.
- has_parents()¶
Checks if the node associated with this table has parents.
- Returns
Boolean.